Difference between revisions of "User:AManandhar"

(Links)
(Links)
Line 19: Line 19:
 
Importing CSV data to SQL Server: http://sqlserver2000.databases.aspfaq.com/how-do-i-load-text-or-csv-file-data-into-sql-server.html
 
Importing CSV data to SQL Server: http://sqlserver2000.databases.aspfaq.com/how-do-i-load-text-or-csv-file-data-into-sql-server.html
  
 
+
<math>
<math>{\alpha^2+\beta^2=1}</math>
+
  \operatorname{erfc}(x) =
 +
  \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
 +
  \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
 +
</math>
  
 
=Internal Links=
 
=Internal Links=

Revision as of 02:08, 21 December 2010

Internal:AManandhar

Internal:UpgradeNotes

Internal:RLM8

Internal:AutoUpdateCheck

Internal:AWPDecisions

Ana:InstallerDesign/Welcome

Ana:AutomaticPatching


Links

Salesforce Data Backup: http://sfdc.arrowpointe.com/2008/04/28/do-you-backup-your-salesforce-data/
Importing CSV data to SQL Server: http://sqlserver2000.databases.aspfaq.com/how-do-i-load-text-or-csv-file-data-into-sql-server.html

$ \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} $

Internal Links

Upgrade Website: http://www.lumina.com/ana/enterLic.htm
Price calculator: http://awp.analyticaonline.com/pricingpolicy/Default.aspx


IPs Cubeplan.com: 173.201.21.179