Log-normal distribution

Revision as of 08:11, 24 April 2007 by ReneeB (Talk | contribs) (adding doc status category)


LogNormal(median, gsdev)

Generates a sample with a lognormal distribution with given median and gsdev (geometric standard deviation). The logarithm of a lognormal random variable has a normal distribution.

A normal distribution is symmetric around its mean: If x := Normal(mean, sdev), then P(x <= mean - sdev) = P(x >= mean + sdev) = .15. Analogously, a lognormal distribution is ratio-symmetric around its median: If y := LogNormal(median, gsdev), then P(y <= median/gsdev) = P(y >= median*gsdev) = .15.

Lognormal actually has four parameters, median, gsdev (geometric standard deviation), mean, stddev (standard deviation). You can specify any two of them, which are sufficient to specify the rest.

LogNormal(median: med, gsdev: gs)  or just LogNormal(med, gs)
LogNormal(median: med, stddev: sd)
LogNormal(median: med, mean: mu)
LogNormal(mean: mu, stddev: s)
LogNormal(mean: mu, gsdev: gs )
LogNormal(gsdev: gs, stddev: sd)

If you specify more than two parameters, it will give an error. If you specify no parameters, it will default to standard lognormal -- i.e. whose natural logarithm is a unit normal, mean 0 and standard deviation 1.

Like other distributions, you can also give one or more Over: indexes. These cause it to generate an array of independent lognormal distributions over the specified index(es). For example,

 LogNormal(m, gsd, Over: i)

Syntax

LogNormal(median, gsdev, mean, stddev: Optional Positive; over: ... Optional Atom)
Comments


You are not allowed to post comments.