# Binomial distribution

(Redirected from CumBinomial)

 Release: 4.6  •  5.0  •  5.1  •  5.2  •  5.3  •  5.4  •  6.0

Consider an event—such as a coin coming down heads—that can be true or false in each trial—or each toss—with probability «p» -- it has a Bernoulli distribution. A binomial distribution describes the number of times an event is true -- e.g., the coin is heads -- in «n» independent trials—or tosses—where the event occurs with probability «p» on each trial.

## Functions

### Parameters

The binomial distribution is described by

• «n»: The number of trials
• «p»: The probability of success in each trial
• «k»: Number of successes
• «u» : The overall probability of k successes in «n» trials (where k is the result). This is also known as the fractile or quartile level of the outcome. Must be 0 ≤ «u» ≤ 1.

### Binomial(n, p)

The number of successes for a quantity described by a binomial distribution. This is the Poisson Distribution function. Use this to describe an uncertain variable that represents the number of successes in a repeated trial.

### ProbBinomial(k, n, p)

The Binomial distribution is a non-negative discrete distribution where the probability of outcome k is given by

$P_{n,p}(k) = \left(\begin{array}{c}n\\k\end{array}\right) p^k (1-p)^{n-k}$

### CumBinomial(k, n, p)

The analytic cumulative probability function for a Poisson distribution. Returns the probability that the actual number of successes is less than or equal to «k».

### CumBinomialInv(u, n, p)

The analytic inverse cumulative probability function for a Poisson(n,p) distribution, also known as the quantile function. For 0<=u<1, this returns the number of successes, k, so that the probability of the outcome of «n» trials having «k» or fewer successes is less than or equal to «k».

#### Examples

An experiment is to be conducted that will consist of rolling a die 100 times and counting the number of times a 6 is rolled. With a 75% probability, the number of sixes that will be observe will be less than or equal to:

CumBinomialInv(75%, 100, 1/6 )

CumBinomialInv is the inverse of CumBinomial, so that for all «n» ≥ 0, 0 ≤ k≤ «n», and 0 < «p» < 1, the following holds (up to the available numeric precision):

CumBinomialInv(CumBinomial(k, n, p), n, p) → k

## Statistics

The distribution has the following statistics: