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The class of mathematical processes characterized by dynamic dependencies between 

successive random variables is called Markov chains.  The rich behavior and wide applicability 

of Markov chains make them important in a variety of applied mathematical applications 

including population and demographics, health outcomes, marketing, genetics, and renewable 

resources.  Analytica’s dynamic modeling capabilities, robust array handling, and flexible 

uncertainty capabilities support sophisticated Markov modeling.  In this webinar, a Markov 

modeling application is demonstrated.  The model develops age-structured population 

simulations using a Leslie matrix structure and dynamic simulation in Analytica. 

Age-structured population models provide the quantitative framework for the 

representation of populations.  Such models are commonly used for analysis of human 

demographics (Pollard 1973) and renewable resources (Getz and Haight 1989).  With respect to 

fisheries, Leslie (1945) developed the representation of a linear discrete population model as a 

matrix equation:  this representation is now commonly referred to as the Leslie matrix population 

model.  This model is commonly used in fisheries management and has been an important 

component of best professional judgment (BPJ) 316(b) assessments under 1977 draft guidance 

(Akçakaya, Burgman, and Ginzburg 2002; Public Service Electric and Gas Company [PSEG] 

1999; U.S. Environmental Protection Agency [EPA] 2002).1 

The mathematical representation of the Leslie matrix is: 

                                                 
1 Fishery managers use the Leslie matrix in various applications.  For example, the Shark Population Assessment 

Group of the National Oceanic and Atmospheric Administration (2006) uses the Leslie matrix to represent the 
population dynamics of sharks through demographic methods and to assess the status of shark stocks through 
stock assessment methodology.  Sabaton et al. use a mathematical model to represent long-term change in a trout 
population under different river management scenarios.  Their model describes the structure of a population divided 
into age classes based on the Leslie matrix.  Hein et al. (2006) use an age-structured Leslie matrix model to 
determine which removal method most effectively reduced the population of invasive rusty crayfish in an isolated 
lake in Wisconsin.  Carlson, Cortés, and Bethea (2003) simulated Leslie matrices to study the life history and 
population dynamics of the finetooth shark in the northeastern Gulf of Mexico. 
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This representation consists of a population vector and a transition matrix.  

N1...NA is the population vector.  The population vector represents the stage-structural 

population of a single stock at time t.  Using a population of yellow perch as an example, N1,t 

would be the number of Age-1 yellow perch in the population at time t, N2,t would be the number 

of Age-2’s in the population at time t, through all the lifestages for yellow perch.   

As the equality condition indicates, multiplying the age-structured population vector at 

time t by the transition matrix returns the age-structured population vector at time t + 1.  Thus, 

with knowledge of a population’s structure and the transition matrix, it is possible to predict the 

population’s structure in the next time period.  Proceeding in a recursive way allows simulation 

of populations for future periods.  

This type of model is an important tool for the quantitative assessment of I&E impacts.   

The next section describes the role of survival rates in a Leslie matrix and provides an example 

of how those rates can be calculated using life history tables such as compiled by EPA during 

Phase II rulemaking. 

1.1 Survival Rates in Population Modeling 

Survival rates in the transition matrix represent the probabilities that a fish in a 

population will survive to the next life-stage.  The transition matrix is constructed so that the 

number in a specific cell is the probability an age-class member will survive to the next age-

class.  In Figure 1 below, Age 1’s will have a 0.0697 probability of surviving to become Age 2’s.  

Applied at the population level, these survival probabilities are the percentage of one life-stage 

that survives to the next.  The survival rates between life-stages can be calculated from 

available life-history tables. 
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Figure 1:  A Basic Leslie Transition Matrix with Survival Probabilities 

 

When a population at time t is multiplied by the above transition matrix (Equation 3.1), a 

proportion of the Age1’s will survive the year and transition to Age2’s at time t+1.  Using natural 

and fishing mortality parameters from EPA, the survival rate can be calculated for each life-

stage transition using Baranov’s catch equation:   

 Survival (S) = exp ^–(M + F) (3.2) 
 

The following example demonstrates how to calculate the survival rate (S) for the 

transition from an Age 3 yellow perch to an Age 4 using mortality values from EPA mortality 

tables:  the Age 3 to Age 4 transition is used as an example because this is the earliest life-

stage of yellow perch that includes fishing mortality.  

 Survival (S) = e ^ – (0.844 + 0.36)   = 0.2999 (3.3) 

1.2 Mortality and Harvesting in Population Modeling 

In addition to the age-structured population of survivors, it is also possible to structure 

the transition matrix to provide a decomposition of the death outcomes.  The survival rate can 

be used to calculate the overall death rate for each life-stage, which can be decomposed to 

provide death rates due to fishing or natural causes.  These rates can be used to project fishing 

and natural mortality over each life-stage as the population breakdown is expanded over the 

years’ of the population’s life.  The fishing mortality rate can be further decomposed to identify 

the fish caught commercially or recreationally.  These rates can be used to project commercial 

and recreational catch. 

Total Death Rate  = 1 – Total Survival Rate (3.4) 
Natural Death Rate  = M/(M+F) * Total Death Rate (3.5) 
Fishing Death Rate  = F/(M+F) * Total Death Rate (3.6) 
*Commercial Death Rate = % of Commercial Fishing Mortality * Fishing Death rate (3.7) 
*Recreational Death Rate = (1 – % of Commercial Fishing Mortality) * Fishing Death rate (3.8)  
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Using Age 3 yellow perch as an example, the outcome probabilities are: 

Total Survival Rate = e ^ – (0.844 + 0.36) = 0.2999 (3.9) 
Total Death Rate = 1 – 0.300 = 0.7001 (3.10) 
Natural Death Rate = 0.844/1.204 * 0.700 = 0.4907 (3.11) 
Fishing Death Rate = 0.36/1.204 * 0.700 = 0.2093 (3.12) 
Comm. Death Rate = 0.5 * Fishing Death rate = 0.1046 (3.13) 
Recr. Death Rate = 0.5 * Fishing Death rate = 0.1046 (3.14) 

 
Outcome probabilities above match the Age 3 column of the transition matrix shown in 

Figure 2. 

 

 
Figure 2:  A Leslie Transition Matrix with Possible Mortality Outcome Probabilities 

 

The fishing mortality has two components; fish that are caught recreationally and fish 

that are caught commercially.  When there is specific data to support a ratio of recreational or 

commercial mortality within the overall fishing mortality (i.e., recreational mortality makes up 33 

percent of the overall fishing mortality), this ratio is applied to the fishing death rate to calculate 

the recreational and commercial death rates.  If no specific ratio data is available, the fishing 

mortality is equally divided between commercial mortality and recreational. 

Like the survival-only transition matrix, the Age 3 column of the matrix contains the 

probabilities that an Age 3 fish will transition to another “state” as time transitions from t to t+1.  

The difference is that these possible transitions include outcomes that remove the fish from the 

population in the subsequent years (fish died naturally, fish caught recreationally, fish caught 

commercially, etc.).  
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1.3 Setup of the Transition Matrix 

To begin setting up the transition matrix, begin with a chance node and set it up to be an 

edit table indexed by the lifestages in the T and T+1 indexes.   

The nodes that compute the transition rates (i.e., commercial death rate, survival rate, 

etc.) do so across all the lifestage transitions in index T.  The evaluation of the commercial 

death rate node for yellow perch is shown below. 

 
 

The value in each cell is the probability that a fish at the lifestage at the T index column 

will transition to state described by the T+1 row index.  So, the appropriate transition probability 

is filled into the transition table as shown below.  

 
 

1.4 Utilization of the Transition Matrix 

The purpose of this transition matrix is to operate on an initial population and project how 

the population will transition (survive, be caught commercially, etc.) over the years of the 

simulation.   

The dynamic expansion of the population is accomplished using the dynamic function, 

where an initial population vector (a table indexed by T) is expanded over the years of the 

simulation using the following node definition.    

Dynamic(Yperch_initial_popul, Slice (Sum (Self[Time-1]*Yperch_transition_ra, Yperch_t), 
Yperch_t_1, cumulate(1,Yperch_t) ))  

 

 



Markov Chains and Leslie Matrix in Analytica  September 2007 

DRAFT  Veritas  
 6 Economic Consulting  

Figure 3 represents the expansion of a 2007 yellow perch population of 1000 Age 1’s, 50 

Age 2’s, and 10 Age 4’s.  The transition matrix from Figure 2 is used to expand the population 

vector over time (years).    

 
Figure 3:  Example of an Age-Structured Population Starting in 2007 

 

1.5 Regeneration in Population Modeling 

A population regenerates by spawning.  Regeneration can be represented in the 

transition matrix by including stage-specific fecundity in the top row.  The top row of the 

transition matrix represents the number of Age 1’s expected from the spawn of mature adults.  It 

is the product of the number of eggs a female in that age-class is expected to lay and the 

number of Age 1’s expected from each egg.   

 

 
Figure 4:  Leslie Transition Matrix with Regeneration 

 

From www.FishBase.org, the fecundity of Yellow Perch for each mature adult (Age 4 

and above) is expected to lay 18,189 eggs.  Using mortality values from EPA, the number of 

Age 1’s which survive from each egg is 0.0002722.   

 18,189 eggs from each mature female * 0.0002722 Age1’s from each egg = 4.95 Age1’s (3.15) 

For all lifestages Age 4 and older, each female is expected to generate 4.95 Age 1’s in the next 

year. 



Markov Chains and Leslie Matrix in Analytica  September 2007 

DRAFT  Veritas  
 7 Economic Consulting  

Figure 5 represents the expansion of a 2007 yellow perch population of 1,000 Age 1’s, 

50 Age 2’s, and 10 Age 4’s.  The transition matrix from Figure 4 is used to expand the 

population vector over time (years).    

 

 
Figure 5:  A Population Expanded over Time with Regeneration 

 

1.6 Biomass vs. Number of Organisms as Effectiveness Metrics 

In certain measurements of population-level fishery impacts, the biomass of fish caught 

is a better valuation than the number of organisms caught.    

In order to expand the Leslie transition matrix to allow biomass calculations, the 

probability of a certain outcome for a lifestage is multiplied by the average weight at that 

lifestage (available by lifestage from same table as natural (M) and fishing (F) mortality) when 

building the probabilities for the transition matrix.  This will enable the matrix to calculate 

biomass by lifestage from the population vector as the statistics are expanded over the years of 

the population’s life. 

 

 
Figure 6:  Biomass Calculations Added into Leslie Transition Matrix 
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At Age 3, the probability coefficient for the biomass caught recreationally at Age 3 is 

equal to the probability of being caught recreationally at Age 3 (Rec. mortality rate) multiplied by 

the average weight at Age 3. 

Probability Age3 caught recreationally = 0.1046 (from Survival & Population section) (3.16) 
Weight at lifestage for an Age 3 = 0.0987 (from Yellow Perch mortality table) (3.17) 
Age 3 biomass coefficient for rec. catch = 0.1046 * 0.0987 = 0.0103 (3.18) 
 

When the population vector is multiplied by the transition matrix (Equation 3.1), the 

number of Age 3’s will multiply by the biomass coefficient for weight caught recreationally under 

the Age 3 column.  The result will represent the amount of biomass resulting from the 

recreational catch of Age 3’s. 

Figure 7 represents the expansion of a 2007 yellow perch population of 1,000 Age 1’s, 

50 Age 2’s, and 10 Age 4’s with the biomass components included in the population expansion.  

 
Figure 7:  Population Expanded with Biomass Components 

 

 


