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The class of mathematical processes characterized by dynamic dependencies between
successive random variables is called Markov chains. The rich behavior and wide applicability
of Markov chains make them important in a variety of applied mathematical applications
including population and demographics, health outcomes, marketing, genetics, and renewable
resources. Analytica’s dynamic modeling capabilities, robust array handling, and flexible
uncertainty capabilities support sophisticated Markov modeling. In this webinar, a Markov
modeling application is demonstrated. The model develops age-structured population

simulations using a Leslie matrix structure and dynamic simulation in Analytica.

Age-structured population models provide the quantitative framework for the
representation of populations. Such models are commonly used for analysis of human
demographics (Pollard 1973) and renewable resources (Getz and Haight 1989). With respect to
fisheries, Leslie (1945) developed the representation of a linear discrete population model as a
matrix equation: this representation is now commonly referred to as the Leslie matrix population
model. This model is commonly used in fisheries management and has been an important
component of best professional judgment (BPJ) 316(b) assessments under 1977 draft guidance
(Akcakaya, Burgman, and Ginzburg 2002; Public Service Electric and Gas Company [PSEG]
1999; U.S. Environmental Protection Agency [EPA] 2002).

The mathematical representation of the Leslie matrix is:

! Fishery managers use the Leslie matrix in various applications. For example, the Shark Population Assessment
Group of the National Oceanic and Atmospheric Administration (2006) uses the Leslie matrix to represent the
population dynamics of sharks through demographic methods and to assess the status of shark stocks through
stock assessment methodology. Sabaton et al. use a mathematical model to represent long-term change in a trout
population under different river management scenarios. Their model describes the structure of a population divided
into age classes based on the Leslie matrix. Hein et al. (2006) use an age-structured Leslie matrix model to
determine which removal method most effectively reduced the population of invasive rusty crayfish in an isolated
lake in Wisconsin. Carlson, Cortés, and Bethea (2003) simulated Leslie matrices to study the life history and
population dynamics of the finetooth shark in the northeastern Gulf of Mexico.
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This representation consists of a population vector and a transition matrix.

N:...Na is the population vector. The population vector represents the stage-structural
population of a single stock at time t. Using a population of yellow perch as an example, N
would be the number of Age-1 yellow perch in the population at time t, N,; would be the number

of Age-2's in the population at time t, through all the lifestages for yellow perch.

As the equality condition indicates, multiplying the age-structured population vector at
time t by the transition matrix returns the age-structured population vector at time t + 1. Thus,
with knowledge of a population’s structure and the transition matrix, it is possible to predict the
population’s structure in the next time period. Proceeding in a recursive way allows simulation

of populations for future periods.

This type of model is an important tool for the quantitative assessment of I&E impacts.
The next section describes the role of survival rates in a Leslie matrix and provides an example
of how those rates can be calculated using life history tables such as compiled by EPA during

Phase Il rulemaking.

1.1  Survival Rates in Population Modeling

Survival rates in the transition matrix represent the probabilities that a fish in a
population will survive to the next life-stage. The transition matrix is constructed so that the
number in a specific cell is the probability an age-class member will survive to the next age-
class. In Figure 1 below, Age 1's will have a 0.0697 probability of surviving to become Age 2’s.
Applied at the population level, these survival probabilities are the percentage of one life-stage
that survives to the next. The survival rates between life-stages can be calculated from

available life-history tables.
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Age 1+ Age 2+ Age 3+ Age 4+ Age 5+ Age 6+ Age T+
Age 1+ 1] 1] 0 u] 1] 0 ]
Age 2+ 0.6969743 0 ] u] 1] 0 0
Age 3+ 0 0.77955 ] u] 1] 0 0
Age 4+ 1] 0 02999915 0 1] 0 0
Age 5+ 1] 0 0 02999915 1] 0 0
Age 6+ 1] 1] ] 0 02999915 0 ]
Age T+ 1] 1] 0 u] 0 02999915 0

Figure 1: A Basic Leslie Transition Matrix with Survival Probabilities

When a population at time t is multiplied by the above transition matrix (Equation 3.1), a
proportion of the Agel’s will survive the year and transition to Age2’s at time t+1. Using natural
and fishing mortality parameters from EPA, the survival rate can be calculated for each life-

stage transition using Baranov’s catch equation:

Survival (S) = exp *~(M + F) (3.2)

The following example demonstrates how to calculate the survival rate (S) for the
transition from an Age 3 yellow perch to an Age 4 using mortality values from EPA mortality
tables: the Age 3 to Age 4 transition is used as an example because this is the earliest life-

stage of yellow perch that includes fishing mortality.
Survival (S) =e *—(0.844 + 0.36) =0.2999 (3.3)

1.2 Mortality and Harvesting in Population Modeling

In addition to the age-structured population of survivors, it is also possible to structure
the transition matrix to provide a decomposition of the death outcomes. The survival rate can
be used to calculate the overall death rate for each life-stage, which can be decomposed to
provide death rates due to fishing or natural causes. These rates can be used to project fishing
and natural mortality over each life-stage as the population breakdown is expanded over the
years’ of the population’s life. The fishing mortality rate can be further decomposed to identify
the fish caught commercially or recreationally. These rates can be used to project commercial

and recreational catch.

Total Death Rate = 1 - Total Survival Rate (3.4)
Natural Death Rate = M/(M+F) * Total Death Rate (3.5)
Fishing Death Rate = F/(M+F) * Total Death Rate (3.6)
*Commercial Death Rate = % of Commercial Fishing Mortality * Fishing Death rate (3.7)

*Recreational Death Rate = (1 — % of Commercial Fishing Mortality) * Fishing Death rate (3.8)
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Using Age 3 yellow perch as an example, the outcome probabilities are:

Total Survival Rate = e - (0.844 + 0.36) =0.2999 (3.9)
Total Death Rate = 1-0.300 =0.7001 (3.10)
Natural Death Rate = 0.844/1.204 * 0.700 = 0.4907 (3.11)
Fishing Death Rate = 0.36/1.204 * 0.700 =0.2093 (3.12)
Comm. Death Rate = 0.5 * Fishing Death rate = 0.1046 (3.13)
Recr. Death Rate = 0.5 * Fishing Death rate = 0.1046 (3.14)

Outcome probabilities above match the Age 3 column of the transition matrix shown in

Figure 2.
Age 1+ Age 2+ Age 3+ Age 4+ Age 5+ Age 6+ Age T+ \

Age 1+ 0 0 0 a u} 0 u]
Age 2+ 0596979 u} 0 1] u} 0 1]
Age 3+ o} 0.77955 o} ] a o} ]
Age 3+ 0 0 029999185 1] u} 0 1]
Age 5+ 0 u} 0 02999315 u} 0 ]
Age 6+ 0 0 0 0 0.2999315 0 u]
Age T+ 1] 1] 0 1] 0 029999185 1]
Count Caught Rec o} 0 04046524 010463524 01046524 01046324 ]
Count Caught Comm 0 0 04048524 01046324 01046524 01046324 1]
Count Died Haturally 0303021 022042 04907034 04907034 04307034 04907034 ]
Totals 1 1 1 1 1 1 i]

Figure 2: A Leslie Transition Matrix with Possible Mortality Outcome Probabilities

The fishing mortality has two components; fish that are caught recreationally and fish
that are caught commercially. When there is specific data to support a ratio of recreational or
commercial mortality within the overall fishing mortality (i.e., recreational mortality makes up 33
percent of the overall fishing mortality), this ratio is applied to the fishing death rate to calculate
the recreational and commercial death rates. If no specific ratio data is available, the fishing

mortality is equally divided between commercial mortality and recreational.

Like the survival-only transition matrix, the Age 3 column of the matrix contains the
probabilities that an Age 3 fish will transition to another “state” as time transitions from t to t+1.
The difference is that these possible transitions include outcomes that remove the fish from the
population in the subsequent years (fish died naturally, fish caught recreationally, fish caught

commercially, etc.).
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1.3 Setup of the Transition Matrix

To begin setting up the transition matrix, begin with a chance node and set it up to be an

edit table indexed by the lifestages in the T and T+1 indexes.

The nodes that compute the transition rates (i.e., commercial death rate, survival rate,
etc.) do so across all the lifestage transitions in index T. The evaluation of the commercial

death rate node for yellow perch is shown below.

Age 1+ o
Age 2+ o
Age 3+ 01047
Age 4+ 0.1047
Age 5+ 01047
Age 6+ 01047

The value in each cell is the probability that a fish at the lifestage at the T index column
will transition to state described by the T+1 row index. So, the appropriate transition probability

is filled into the transition table as shown below.

£7 | Edit Table of YPerch Transition Rates

YPerch T+1 w
o

o ~ YPerchT W D
age 1+ Age 2+ Age 3+ Age 4+
Age 1+ 1 1] [i]
Age 2+ Yperch_survival_rate[Yperch_mort_rows="Age 1+ a o
Age 3+ 0 Yperch_survival_rate[Yperch_mor_rows="Age 2+ a
Age 4+ 0 o Mperch_suryival_rate[Yperch_mort_tovws='Age 3+
Age 5+ 0 o o perch_survival _rate[Ype
Age 6+ 0 i [i]
Age T+ 1} o o
Count Caught Rec Yperch_rec_death_rat]Yperch_mort_rows="Age 1+] Mperch_rec_death_rat[Yperch_mort_rows="Age 2+'] Wperch_rec_desth_rat[vperch_mort_rows='Age 3+ Wperch_rec_death_rat]vpe
Count Caught Comm “fperch_comm_desth_ra[Yperch_mort_rows="Age 1+]  Yperch_comm_death_ra[Yperch_mort_rowes="Age 2+']  “perch_comm_desth_ra[Yperch_mort_rows='Age 3+ Yperch_comm_death_ra[vps
Count Died Naturally Yperch_net_desth_rat[vperch_mort_rovws="8ge 1+'] Yperch_nat_death_rat[Yperch_mort_rowves="tge 2+] Yperch_net_desth_rat[Yperch_mort_rows="Age 3+'] “fperch_net_death_ret[vpe

1.4 Utilization of the Transition Matrix

The purpose of this transition matrix is to operate on an initial population and project how
the population will transition (survive, be caught commercially, etc.) over the years of the

simulation.

The dynamic expansion of the population is accomplished using the dynamic function,
where an initial population vector (a table indexed by T) is expanded over the years of the
simulation using the following node definition.

Dynamic(Yperch_initial_popul, Slice (Sum (Self[Time-1]*Yperch_transition_ra, Yperch_t),
Yperch_t_1, cumulate(1,Yperch_t)))
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Figure 3 represents the expansion of a 2007 yellow perch population of 1000 Age 1's, 50
Age 2's, and 10 Age 4’s. The transition matrix from Figure 2 is used to expand the population

vector over time (years).

2007 2008 2009 2010 2011 2012 2013 2014 |
Age 1+ 1000 0 0 0 0 0 0 0
Age 2+ 50 B95.979 0 0 0 0 0 0
Age 3+ 0 35979 5433509 0 0 0 0 0
Age 4+ 10 0 1169335  163.0005 0 0 0 0
Age 5+ 0 2899915 0 3507919 4589892 0 0 0
Age 6+ 0 0 0.599951 0 1052347 1466928 0 0
Age T+ 0 0 0 0269975 0 03156955 4400653 0
Count Caught Rec 0 1.046524 4393194 5518089 1742554 5227519 1535175 0
Count Caught Comm 0 1046524 4393194 5518089 1742554 5227519 1535175 0
Count Died Haturally 0 318849 1742273 2728037 5170641 2451126 7195264 0

Figure 3: Example of an Age-Structured Population Starting in 2007

1.5 Regeneration in Population Modeling

A population regenerates by spawning. Regeneration can be represented in the
transition matrix by including stage-specific fecundity in the top row. The top row of the
transition matrix represents the number of Age 1's expected from the spawn of mature adults. It
is the product of the number of eggs a female in that age-class is expected to lay and the

number of Age 1's expected from each egg.

Age 1+ Age 2+ Age 3+ Age 4+ Age 5+ Age 6+ Age T+

Age 1+ 0 0 4951804 4951804  4.951804 0
Age 2+ 0696979 0 0 0 0 0 0
Age 3+ 0 077958 0 0 0 0 0
Age 4+ 0 0 02999316 0 0 0 0
Age 5+ 0 0 0 02999915 0 0 0
Age 6+ 0 0 0 0 02999916 0 0
Age T+ 0 0 0 0 0 02999916 0

Figure 4: Leslie Transition Matrix with Regeneration

From www.FishBase.org, the fecundity of Yellow Perch for each mature adult (Age 4
and above) is expected to lay 18,189 eggs. Using mortality values from EPA, the number of

Age 1's which survive from each egg is 0.0002722.

18,189 eggs from each mature female * 0.0002722 Agel’s from each egg = 4.95 Agel’s (3.15)

For all lifestages Age 4 and older, each female is expected to generate 4.95 Age 1's in the next

year.
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Figure 5 represents the expansion of a 2007 yellow perch population of 1,000 Age 1's,
50 Age 2’s, and 10 Age 4's. The transition matrix from Figure 4 is used to expand the

population vector over time (years).

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 H
Age 1+ 1000 4951804 1485501 52328971 §24.5186 28T NTL 9661976 o7 .02v4q 551 6873 436.0845
Age 2+ a0 695979 3451303 1033363 434634 oTd BT22 2002541 B7.34194 4009542 4731218
Age 3+ 1] 334979 5433509 2680367 S.071431 F3EE32 4430029 1361141 92 49543 31.25758
Age 4+ 10 0 1169338 163.0005  S.071481 2421378 1016465 1343972 45 83295 157491
Age 5+ o) 2599913 0] 3507919 45.59392 2421378 07263935 3049322 4031807 1404385
Age 6+ 1] 0 0599951 o 1.052347 14 66925 07263935 02179122 09147718 12.09509
Age T+ ] 0 0] 0269975 0 0.3156955 4400663 02179122 0068537185 02744241

Figure 5: A Population Expanded over Time with Regeneration

1.6 Biomass vs. Number of Organisms as Effectiveness Metrics

In certain measurements of population-level fishery impacts, the biomass of fish caught

is a better valuation than the number of organisms caught.

In order to expand the Leslie transition matrix to allow biomass calculations, the
probability of a certain outcome for a lifestage is multiplied by the average weight at that
lifestage (available by lifestage from same table as natural (M) and fishing (F) mortality) when
building the probabilities for the transition matrix. This will enable the matrix to calculate
biomass by lifestage from the population vector as the statistics are expanded over the years of

the population’s life.

Age 1+ Age 2+ Age 3+ Age 4+ Age 5+ Age 6+ Age T+ {
Age 1+ 0 0 0 0 0 0 0
Age 2+ 0695979 0 0 0 0 0 0
Age 3+ 0 0.77353 0 0 0 0 0
Age 3+ 0 0 0.299991 5 0 0 0 0
Age 5+ 0 0 0 0.2999915 0 0 0
Age 6+ 0 0 0 0 0.2999915 0 0
Age T+ a a a 0 0 0.299991 5 0
Count Caught Rec 0 0 01046524 01046524 01046524 01046524 0
Count Caught Comm 0 0 01046524 01046524 01046524 01046524 0
Count Died Haturally 0.30302 0.22042 0.4307034 0.4307034 0.4307034 0.4307034 0
Weight Survived 001707599 00339173 002960919 003959592 004979365 0.06419525 0
Weight Caught Rec 0 0 EEgiee=i=l 001331411 00173723 002239561 0
Weight Caught Comm 0 0 001032919 001381411 00173723 002239561 0
Weight Died Haturally 7.424015m 953527 m,  0.045843242| 006477285 003145676 04050105 0

Figure 6: Biomass Calculations Added into Leslie Transition Matrix
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At Age 3, the probability coefficient for the biomass caught recreationally at Age 3 is

equal to the probability of being caught recreationally at Age 3 (Rec. mortality rate) multiplied by

the average weight at Age 3.

Probability Age3 caught recreationally
Weight at lifestage for an Age 3

Age 3 biomass coefficient for rec. catch

= 0.1046 (from Survival & Population section) (3.16)

0.0987 (from Yellow Perch mortality table) (3.17)
0.1046 * 0.0987 = 0.0103

(3.18)

When the population vector is multiplied by the transition matrix (Equation 3.1), the

number of Age 3’s will multiply by the biomass coefficient for weight caught recreationally under

the Age 3 column.

recreational catch of Age 3's.

The result will represent the amount of biomass resulting from the

Figure 7 represents the expansion of a 2007 yellow perch population of 1,000 Age 1's,

50 Age 2’s, and 10 Age 4's with the biomass components included in the population expansion.

2008 2009 2010 2011 2012 2013 2014 H
Age 1+ 1000 0 0 0 0 0 0 0
Age 2+ a0 96 979 0 0 0 0 0 0
Age 3+ 0 38979 543.3500 0 0 0 0 0
Age 10 o 1169335 1630008 0 0 0 0
Age 5+ 0 2599913 0 3507919 4889392 0 0 0
Age 6+ 0 0 0899951 0 1052347 1466925 0 0
Age T+ 0 0 0 0269975 0/ 03156855 4 400663 0
Count Caught Ree O 1046524 439394 5818089 1742554 5227519 1535175 0
Count Caught Comm O/ 1046524 439394 5818089 1742554 5227519 1535175 0
Count Died Naturally 0 385949 174.2273 2728057 §1.70641 | 2451126 7195264 0
Weight Survived 0 1916756 2493920 16609 EBE29347 | 2502659 0GM74H9 0
Weight Caught Rec O/ 04381411 0454737 5794063 2312653 0&730544 03285274 0
Weight Caught Comm O 04381411 0454737 5794063 2312653 0&730544 03285274 0
Weiglht Died Naturally 0/ 8551157 &&15035 2746772 1084377 4093655 1.540425 0
Figure 7: Population Expanded with Biomass Components
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